
STREAMING SQL CHEAT SHEET

Lenses.io delivers a powerful data operations
workspace to build & operate real time applications
on Kafka & Kubernetes. Deployed as a container or
as a JVM, Lenses.io works with any Kafka &
Kubernetes environment including managed and
cloud services.

WHAT IS LENSES.IO?

Streaming SQL allows anyone to build data process-
ing applications with SQL. Queries react to data as
soon as it is available in Apache Kafka. They can
reshape your data, aggregate it based on any field or
time window. Or enrich it with other streaming data.
The results are pushed back to a Kafka topic so that
downstream applications & processes can
consume. Pipelines are deployed and scaled on
your own Kubernetes environment.

LENSES.IO STREAMING SQL

Streams (Stateless) and tables (Stateful) have
different semantics and use-cases, but are strongly
related nonetheless.

This relationship is known as stream-table duality.
Every stream can be interpreted as a table, and
similarly a table can be interpreted as a stream.

Lenses.io supports reading and writing data from/to
Kafka topics in different serialization formats.

STATEFUL AND STATELESS PROCESSING

STREAM
(Stateless)

SELECT STREAM *
FROM
website_traffic

Represents an
unbounded
sequence of
independent
events over a
continuously
changing
dataset. The
dataset is the
totality of all
data
described by
every event
received so
far

TABLE
(Stateful)

SELECT TABLE *
FROM customers

For each key, a
table holds the
latest version
(state)
received of its
value. Upon
receiving
events for
keys that
already have
an associated
value, such
values will be
overridden and
state changed

A projection represents the ability to reshape the
data layout (Key or Value).
Projections are the main building block of SELECT
statements

INSERT INTO target-topic
SELECT STREAM
 CONCAT('a', 'b') AS result1
 , (1 + field1) AS _key.a
 , _key.field2 AS result3
 CASE

WHEN field3 = 'Robert'
THEN 'It's bobby'

WHEN field3 = 'William'
THEN 'It's willy'

ELSE 'Unknown'
 END AS who_is_it
FROM INPUT-topic;

In the above example, result1, _key.a, result3 and
who_is_it are all fields outputted into target-topic.

STREAMING SQL EXAMPLE USECASES

SET defaults.topic.autocreate=true;

INSERT INTO speeding_cars
SELECT STREAM car_speed AS speed

, car_name
FROM car_data;
WHERE car_speed > 100

The above example will autocreate any necessary
topics (in this case, “speeding_cars” topic) and
populate it with the value of car_speed renamed as
speed and car_name from the car_data topic only
for events where the car_speed is greater than 100 .

FIRST EXAMPLE

KAFKA RECORD

Usecase

API | UI | GitOps

SQL

Produce

SQL App

Deploy App

Consume

LENSES.IO

Kubernetes

Any Kafka

Example

Filtering Filter payment events a value greater
than 5000 in order to route them
through an ML validation process.

Enriching Combine the customer order information
with the customer details.

Re-key Change the event key to suit a
downstream consumer or align the topic
for Kafka Streams joins/aggregation.

Reformatting Translate incoming JSON data to AVRO
for better control over schema evolution,
rogue messages and so on.

Aggregating Average the bandwidth per network
device in a rolling 5 minute window.

Reshaping Unwrap certain field values for a topic
containing energy usage information
into another topic so that it can be sent
to a time-series database.

Obfuscate
the data

Apply redaction to various sensitive
fields when moved to another topic.

SUPPORTED FORMATS

PROJECTIONS
Format Read Write

INT yes yes

BYTES yes yes

LONG yes yes

JSON yes yes

XML yes yes

STRING yes yes

CSV yes not yet

AVRO Via schema
registry

Via schema
registry

Google Protobuf Via custom
configuration

no

TW[<the_other_
formats>]

yes yes

SW[<the_other_
formats>]

yes yes

Custom Via custom
configuration

no

Facet Lenses.io
reference

Example

Key _key

OR

_key.<fieldname>

INSERT INTO
outputTopic
SELECT TABLE _key
AS customerId
FROM customers

Value _value

OR

_value.<fieldname>

OR

<fieldname>

OR

*

INSERT INTO
outputTopic
SELECT TABLE
_value.firstName
FROM customers

_key customer_id KW event_time

NULL 1234 249 1594041840834

NULL

timestamp

2020-07-30 13:00

2020-07-30 13:06 1234 359 1594041840834

Stream: electricity_events

JSONSTRING

STREAMING SQL CHEAT SHEET

EXAMPLE: RESHAPE JSON

Reshape the car_speed_events stream by setting sensor_id and event_time as keys
and nesting mph and a calculated kmph values for speed object in the value field.

SELECT STREAM sensor.id AS _key.sensor_id
 , event_time AS _key.event_time
 , car_id
 , speedMph AS speed.mph
 , speedMph * 1.60934 AS speed.kmph
FROM car_speed_events;

event_time sensor.id car_id speedMph

2020-07-30 13:00 2 101 46

2020-07-30 13:06 3 102 37

Stream: car_speed_events

JSON

_key.event_time car_id speed.mph speed.kmph

2020-07-30 13:00 101 46 74.02964

2020-07-30 13:06

_key.sensor_id

NULL

NULL 102 37 59.54558

Stream: car_speed_by_sensor_and_time

JSONJSON

EXAMPLE: AGGREGATE OVER TIME WINDOW

Calculate the rolling average KW for each customer_id for every 10 minute
period every 5 minutes. Populate into electricity_event_avg stream

INSERT INTO electricity_events_avg
SELECT STREAM customer_id ,
 AVG (KW) AS KW
FROM electricity_events
WINDOW BY HOP 10m, 5m
GROUP BY customer_id

timestamp _key customer_id KW

2020-07-30 13:00 NULL 1234 304

2020-07-30 13:05 NULL 1234 359

Stream: electricity_events_avg

JSONSTRING

Type

Logical

Arithmetic

Ordering

Equality

String

Case

AND, OR WHERE 1 + _value.field1 > 5
 AND _value.field2 < 10

WHERE 1 + _value.field1 > 5

WHERE _value.field1 > _value.field2

WHERE _key != LENGTH (_value.field1)

WHERE _value.field1 NOT LIKE “%foo%”

CASE
 WHEN field3 = 'Robert' THEN 'Its bobby'
 WHEN field3 = 'William' THEN 'Its willy'
 ELSE 'Unknown'
END AS who_is_it

+, -, *, /,
% (MOD)

>, >=, <,
<=

=, !=

LIKE,
NOT LIKE

IN

Supported
Operators

Example

CONDITIONAL EXPRESSIONS EXAMPLE: RE-KEY & CONVERT TO AVRO

Select move_number and date_released from transformer_movies_xml topic
and put in as AVRO format in transformer_movies_avro topic. Make movie_num-
ber as the _key and only select movies where movie_number less than 300.

INSERT INTO transformer_movies_avro
STORE KEY AS AVRO VALUE AS AVRO
SELECT STREAM movie_number AS _key
 , date_released
FROM transformer_movies_xml
WHERE movie_number > 0 AND
 movie_number < 300

transformer_movies_avro

String XML

_key movie_num data_released director

NULL 3 2013 Michael Bay

transformer_movies_xml

AVRO AVRO

_key data_released

3 2013

WITH ship_names_rekeyed AS
 (SELECT STREAM ship_names.mmsi AS _key
 FROM ship_names);

WITH ship_names_state AS
 (SELECT TABLE *
 FROM ship_names_rekeyed);

INSERT INTO ship_speeds_with_names
SELECT STREAM fast_vessel_processor._key AS mmsikey
 , fast_vessel_processor.Speed
 , ship_names.owner
 , ship_names.name
FROM fast_vessel_processor
INNER JOIN ship_names_state ON fast_vessel_processor._key.MMSI
= CAST(ship_names_state._key AS LONG);

Populate the ship_speeds_with_names topic with the speed field from
fast_vessel_processor topic joined with the ship_names topic using the
MMSI value. The ship_names MMSI value is stored as a STRING whereas
the fast_vessel_processor is stored as a LONG. The ship_names also doesn't
have a key so needs to be rekeyed (ship_names_rekeyed) in order to build a
state table (ship_names_state) since states cannot have NULL keys.

EXAMPLE: JOIN STREAM WITH TABLE & RE-KEY CHANGING STORAGE FORMAT

JOIN TYPES

At times, it is useful to control the resulting Key and/or Value storage of the
output topic. If the input is Json, the output for the streaming computation can
be set to Avro.

The syntax is the following:
INSERT INTO <target topic> STORE KEY AS <format> VALUE AS
<format> …

Stream: ship_names_rekeyed

Re-key

Stream: ship_names

STRING JSON

_key name Owner mmsi

NULL The Portia Isabelle Bray 12334

LONG JSON

_key name Owner mmsi

1234 The Portia Isabelle Bray 12334

Generate State Table

State: ship_names_rekeyed_state

LONG JSON

_keyMMSI speed

1234 3

Stream: fast_vessel_processor

Stream: ship_speed_with_names

JSON JSON

_key mmsi name Owner

1234 1234 The Portia Isabelle Bray

speed

3.6

LONG JSON

_key name Owner mmsi

1234 The Portia Isabelle Bray 12334

STREAMING SQL CHEAT SHEET

From/To INT LONG

INT = yes

LONG no =

STRING no no

AVRO If Avro storage
contains integer
only

If the Avro
storage contains
integer or long
only

JSON If the Json
storage contains
integer only

If the Json
storage contains
integer or long
only

STRING

yes

yes

=

yes

yes

JSON

no

no

no

yes

=

AVRO

yes

yes

yes

=

yes

Join Type Description Lexicon

Inner This join type
will only emit
records where a
match has
occurred.

JOIN

Example

INSERT INTO Result
SELECT STREAM customersTa-
ble.name ,
 ordersStream.item
FROM ordersStream
JOIN customersTable ON
customersTable.id =
ordersStream.customer_id;

Right A mirror of a
LEFT JOIN. It
selects all the
records from
the right side of
the join
regardless of a
match:

RIGHT JOIN INSERT INTO Result
SELECT TABLE customersTa-
ble.name ,
 or-
dersStream.item
FROM customersTable
RIGHT JOIN ordersStream ON
customersTable.id =
ordersStream.customer_id;

Left Selects all the
records from
the left side of
the join
regardless of a
match:

LEFT JOIN INSERT INTO Result
SELECT STREAM customersTa-
ble.name ,
 ordersStream.item
FROM ordersStream
LEFT JOIN customersTable ON
customersTable.id =
ordersStream.customer_id;

Outer Union of left
and right joins.
It selects all
records from
the left and
right side of the
join regardless
of a match
happening:

OUTER INSERT INTO Result
SELECT TABLE custom-
ersStream.name ,
 or-
dersStream.item
FROM ordersStream
OUTER JOIN customersStream
ON customersTable.id =
ordersStream.customer_id;

JOIN MATCH EXPRESSIONS

JOIN COMPATIBILITY

if no ON expression is provided, the join will be evaluated based on the equality
of the _key facet

SUPPORTED TIME DESCRIPTORS

STREAMING SQL CHEAT SHEET

Equality customers.id =
order.user_id

customers.id - 1 =
order.user_id - 1

substr(customers.name,
5) = order.item

INSERT INTO Result
 SELECT TABLE
 customersStream.name,
 ordersStream.item
 FROM ordersStream
 OUTER JOIN
 customersStream ON
 substr(customersTable.name, 5)
 = ordersStream.customerName;

Logical customers._key =
order.user_id AND
len(customers.name) >
10

len(customers.name) >
10 AND substr(custom-
er.name,1) = "J"

substr(customers.name,
5) = order.item AND
len(customer.name) > 10
OR customer_key > 1

INSERT INTO Result
 SELECT TABLE
 customersStream.name,
 customersTable.country,
 ordersStream.customerId,
 FROM ordersStream
 OUTER JOIN
 customersStream ON
 customersTable.country = “USA”
 AND customersTable.id =
 ordersStream.customerId

Boolean len(customers.name) >
10

substr(custom-
er.name,1) = "J"

len(customer.name) >
10 OR customer_key > 1

INSERT INTO Result
 SELECT TABLE
 cars_table.cars_name,
 car_speeds.speed
 FROM cars_table
 OUTER JOIN
 car_speeds ON
 car_speeds.speed > 100

Left Right Allowed Types

Stream Stream All

Table Table All

Table Stream RIGHT JOIN

Window

Required

no

no

Result

Stream

Table

Stream Table INNER, LEFT JOIN no Stream

Stream

STREAM-TO-STREAM WINDOWING WITH WITHIN

When two streams are joined Lenses needs to know how far away in the past
and in the future to look for a matching record.

SELECT STREAM customers.name ,
 orders.item
FROM customers
LEFT JOIN orders WITHIN 5s ON customers.id = orders.cus-
tomer_id WITHIN 5s;

The above example means that an event with an orders.item may be generated
with a null value for customers.name if a matching customers.id event has not
been generated within a 5 second +/- window.

Duration Description Example

ms time in milliseconds 100ms

s time in seconds 10s

m time in minutes 10m

h time in hours 10h

SUPPORTED TIME DESCRIPTORS

Hopping Window WINDOW BY HOP
<duration_time>,<hop_interval>

Fixed size and overlapping
windows. The same event can
overlap into multiple windows

WINDOW BY SESSION
<inactivity_interval>

Defined by a period of activity
separated by a specified gap of
inactivity at which point current
session closes

Tumbling Window WINDOW BY TUMBLE
<duration_time>

duration and hop interval are
equal. An event can only appear
in one window.

Grace period WINDOW BY <windowing type>
GRACE BY <grace time>

For a window to accept
late-arriving records a grace
period can be defined. If a
record falls within a window and
it arrived before the end of the
grace time defined then the
record will be processed and
the aggregations or joins will
update. If not, the record is
discarded

1 2 3 4 5 6 7 8

x
Record
key 1

Record
key 2

x

x x

x x

x

WINDOW BY HOP 4m, 3m

1 2 3 4 5 6 7 8 9

Window 1

Window 2

WINDOW BY TUMBLE 4m

1 2 3 4 5 6 7 8 9

x

Window 2

3 mins of inactivity

x x

WINDOW BY SESSION 3m

1 2 3 4 5 6 7 8 9

Window 1

Discarded

x x

Window 1

WINDOW BY TUMBLE 4m
GRACE BY 3m

x

Try out SQL on real-time data

Get Workspace

https://lenses.io/start/?utm_source=event&utm_medium=sqlsheet&utm_campaign=kubecon2020

