

Q LENSES

CONDITIONAL EXPRESSIONS

Supported
Operators

Type Example

Logical AND, OR WHERE 1 + _value.fieldl > 5
AND _value.field2 < 10
Arithmetic | +, -, *, /, | WHERE 1 + _value.fieldl > 5
$ (MOD)
Ordering >, >=, <, WHERE _value.fieldl > _value.field2
<=
Equality =, I= WHERE _key != LENGTH (_value.fieldl)
String LIKE, WHERE _value.fieldl NOT LIKE “%foo%”
NOT LIKE
Case IN CASE
WHEN field3 = 'Robert' THEN 'Its bobby'
WHEN field3 = 'William' THEN 'Its willy'
ELSE 'Unknown'
END AS who is it

EXAMPLE: RESHAPE JSON

SELECT STREAM sensor.id AS _key.sensor_ id
, event time AS key.event time
, car_id
, speedMph AS speed.mph
, speedMph * 1.60934 AS speed.kmph

FROM car_speed_events;

Reshape the car_speed_events stream by setting sensor_id and event_time as keys
and nesting mph and a calculated kmph values for speed object in the value field.

JSON
event_time sensor.id car_id speedMph
2020-07-3013:00 | 2 101 46
2020-07-3013:06 | 3 102 37

Stream: car_speed_events

JSON JSON
_key.sensor_id _key.event_time car_id speed.mph speed.kmph
NULL 2020-07-3013:00 | 101 46 74.02964
NULL 2020-07-30 13:06 | 102 37 59.54558

Stream: car_speed_by_sensor_and_time

STREAMING SQL CHEAT SHEET

EXAMPLE: RE-KEY & CONVERT TO AVRO

INSERT INTO transformer movies_avro
STORE KEY AS AVRO VALUE AS AVRO
SELECT STREAM movie number AS _key
, date_released
FROM transformer movies_xml
WHERE movie_number > 0 AND
movie number < 300

Select move_number and date_released from transformer_movies_xml topic
and put in as AVRO format in transformer_movies_avro topic. Make movie_num-
ber as the _key and only select movies where movie_number less than 300.

String XML

_key movie_num data_released director

2013

NULL 3 Michael Bay

transformer_movies_xml

AVRO AVRO

data_released

_key

3 2013

transformer_movies_avro

EXAMPLE: AGGREGATE OVER TIME WINDOW

INSERT INTO electricity events_avg
SELECT STREAM customer id ,
AVG (KW) AS KW
FROM electricity_ events
WINDOW BY HOP 10m, 5m
GROUP BY customer_ id

Calculate the rolling average KW for each customer_id for every 10 minute
period every 5 minutes. Populate into electricity_event_avg stream

STRING JSON

timestamp _key customer_id KW event_time
2020-07-30 13:00 | NULL 1234 249 1594041840834
2020-07-30 13:06 | NULL 1234 359 1594041840834

Stream: electricity_events

STRING JSON

timestamp _key customer_id KW
2020-07-30 13:00 | NULL 1234
2020-07-30 13:05 | NULL 1234 359

Stream: electricity_events_avg

STREAMING SQL CHEAT SHEET

Q LENSES

EXAMPLE: JOIN EAM WITH TABLE & RE-KEY CHANGING STORAGE FORMAT

WITH ship names_rekeyed AS
(SELECT STREAM ship names.mmsi AS _key
FROM ship names);

At times, it is useful to control the resulting Key and/or Value storage of the
output topic. If the input is Json, the output for the streaming computation can
be set to Avro.

WITH ship names_state AS
(SELECT TABLE *
FROM ship names_rekeyed);

The syntax is the following:
INSERT INTO <target topic> STORE KEY AS <format> VALUE AS

<format> ..
INSERT INTO ship speeds _with names
SELECT STREAM fast vessel processor. key AS mmsikey
- - - From/To INT LONG STRING JSON AVRO
, fast_vessel processor.Speed
, ship names.owner INT = bES ES e e
, ship names.name LONG no - yes no yes
FROM fast vessel processor
INNER JOIN ship names state ON fast vessel processor. key.MMSI STRING no ne = noe yes
= CAST(ship names state._key AS LONG); JSON If the Json If the Json yes = yes
storage contains | storage contains
Populate the ship_speeds_with_names topic with the speed field from integer only integer or long
fast_vessel_processor topic joined with the ship_names topic using the only
MMSI value. The ship_names MMSI value is stored as a STRING whereas
the fast_vessel_processor is stored as a LONG. The ship_names also doesn't AVRO If Avro storage Ifthe Avro yes yes =
have a key so needs to be rekeyed (ship_names_rekeyed) in order to build a Co?ta'"s LISOS §ttc>rage colnta'"s
state table (ship_names_state) since states cannot have NULL keys. o g‘n?yger oriong

STRING

JOIN TYPES
_key Join Type Description Lexicon Example
NULL The Portia Isabelle Bray | 12334 Inner This join type JOIN INSERT INTO Result
will only emit SELECT STREAM customersTa-
Stream: ship_names records where a ble.name ,
match has ordersStream.item
Re-key occurred. FROM ordersStream
JOIN customersTable ON
customersTable.id =
ordersStream.customer_id;
Left Selects all the LEFT JOIN | INSERT INTO Result
records from SELECT STREAM customersTa-
1234 The Portia Isabelle Bray 12334 the left side of pleinamely
the join ordersStream.item
Stream: ship_names_rekeyed regardless of a FROM ordersStream
match: LEFT JOIN customersTable ON
Generate State Table customersTable.id =
ordersStream.customer_id;
Right A mirror of a RIGHT JOIN| INSERT INTO Result
LEFT JOIN. It SELECT TABLE customersTa-
selects all the ble.name ,
1234 The Portia Isabelle Bray 12334 records from or-
the right side of dersStream.item
State: ship_names_rekeyed_state the join S ersEeneEEble
regardless of a RIGHT JOIN ordersStream ON
match: customersTable.id =
ordersStream.customer_id;
LONG JSON Outer Union of left OUTER INSERT INTO Result
and right joins. SELECT TABLE custom-
-keyMMsI S It selects all ersStream.name ,
records from or-
125 3 the left and dersStream.item
right side of the FROM ordersStream
Stream: fast_vessel_processor join regardless OUTER JOIN customersStream
of a match ON customersTable.id =
happening: ordersStream.customer_id;

1234 1234

The Portia

Isabelle Bray | 3.6

Stream: ship_speed_with_names

Q LENSES STREAMING SQL CHEAT SHEET

JOIN M H EXPRESSI SUPPORTED TIME DESCRIPTORS

Duration Description Example

if no ON expression is provided, the join will be evaluated based on the equality

ms time in milliseconds 100ms
of the _key facet
s time in seconds 10s
Equality | customers.id = INSERT INTO Result . . .
order.user id TR T m time in minutes 10m
customersStream.name, h time in hours 10h

customers.id - 1 =
order.user_id - 1

ordersStream.item
FROM ordersStream

substr(customers.name, OUTER JOIN
5) = order.item customersStream ON SUPPORTED TIME DESCRIPTORS
substr (customersTable.name, 5)

= ordersStream.customerName; Hopping Window WINDOW BY HOP 12 3 4 5 6 7 8
<duration_time>,<hop_interval> x x x| 0
Record{
1 t > INSERT INTO Result - s
. esu . . .
BeelEan || de(erEeEEo) Fixed size and overlapping T
10 SELECT TABLE . x L
windows. The same event can ezl
CER SO HEL, overlap into multiple windows B s
substr (custom: . car_speeds.speed o
er.name,1l) = "J FROM cars_table WINDOW BY HOP 4m, 3m
OUTER JOIN
len(customer.name) > . 5
{ J car_speeds ON Tumbling Window | WINDOW BY TUMBLE 12 3 4 05 6 7 8 9

10 OR customer_key > 1

car_speeds.speed > 100 <duration_time> Window 1 P
1 1 1 1 Window 2
1 1 1 1

duration and hop interval are [T T T R T

Logical | customers. key = INSERT INTO Result equal. An event can only appear
order.user_id AND SELECT TABLE in one window. WINDOW BY TUMBLE 4m
len(customers.name) > customersStream.name,
10 customersTable.country, WINDOW BY SESSION Lo s o4 s e s
len(customers.name) > ;:i:rZi;’Zj:";;z:;omerId' <inactivity_interval> [Z] : : [
10 AND substr(custom- . . - [
er.name,1) = "J" OUTER JOIN Defined by a period of activity e
customersStream ON separated by a specified gap of . o
substr (customers.name, customersTable.country = “USA” inactivity at which point current JWL
5) = order.item AND AND customersTable.id = session closes WINDOW BY SESSION 3m
len(customer.name) > 10 ordersStream.customerId
OR customer key > 1 Grace period WINDOW BY <windowing type> 12 3 4 5 6 7 8 9
GRACE BY <grace time> !:] o ‘ . ‘ . .
Windown 4| l Lol
For a window to accept R R SR N A
late-arriving records a grace v, Dicarded
JOIN COMPATIBILITY period can be defined. If a . . ‘ ‘ . .
record falls within a window and | Wndewn v 00
Left Right Allowed Types Window Result it arrived before the end of the o
i grace time defined then the WINDOW BY TUMBLE 4m
Stream Stream Al Required Stream record will be processed and GRACE BY 3m
Table Table Al e Table the aggregations orjoins'will
update. If not, the record is
Table Stream RIGHT JOIN no Stream discarded
Stream Table INNER, LEFT JOIN no Stream

STREAM-TO-STREAM WINDOWING WITH WITHIN

When two streams are joined Lenses needs to know how far away in the past
and in the future to look for a matching record.

Try out SQL on real-time data

Get Workspace
SELECT STREAM customers.name ,
orders.item
FROM customers
LEFT JOIN orders WITHIN 5s ON customers.id = orders.cus-
tomer id WITHIN 5s;

The above example means that an event with an orders.item may be generated
with a null value for customers.name if a matching customers.id event has not
been generated within a 5 second +/- window.

